Files
comfyui-serverless/README.md
Nick a5adfe060e Initial commit: ComfyUI RunPod Serverless endpoint
- Dockerfile with CUDA 12.8.1, Python 3.12, PyTorch 2.8.0+cu128
- SageAttention 2.2 compiled from source
- Nunchaku wheel installation
- 12 custom nodes pre-installed
- Handler with image/video output support
- Model symlinks to /userdata network volume

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude Opus 4.5 <noreply@anthropic.com>
2025-12-25 21:59:09 +13:00

280 lines
5.9 KiB
Markdown

# ComfyUI RunPod Serverless
RunPod Serverless endpoint for ComfyUI with SageAttention 2.2, supporting image and video generation workflows.
## Stack
- CUDA 12.8.1 / Ubuntu 22.04
- Python 3.12
- PyTorch 2.8.0+cu128
- SageAttention 2.2 (compiled)
- Nunchaku 1.0.2
- 12 custom nodes pre-installed
## Prerequisites
- Docker with NVIDIA runtime
- RunPod account with API key
- Network volume created in RunPod
- Container registry (Docker Hub, Gitea, etc.)
## Build
```bash
docker build -t comfyui-runpod:latest .
```
Build with specific platform (if building on ARM):
```bash
docker build --platform linux/amd64 -t comfyui-runpod:latest .
```
## Push to Registry
Docker Hub:
```bash
docker tag comfyui-runpod:latest yourusername/comfyui-runpod:latest
docker push yourusername/comfyui-runpod:latest
```
Self-hosted Gitea:
```bash
docker tag comfyui-runpod:latest git.yourdomain.com/username/comfyui-runpod:latest
docker push git.yourdomain.com/username/comfyui-runpod:latest
```
## Network Volume Setup
Create a network volume in RunPod and populate with models:
```
/userdata/
├── models/
│ ├── checkpoints/ # SD, SDXL, Flux models
│ ├── loras/ # LoRA models
│ ├── vae/ # VAE models
│ ├── controlnet/ # ControlNet models
│ ├── clip/ # CLIP models
│ └── upscale_models/ # Upscaler models
└── .cache/
└── huggingface/ # HF model cache
```
Upload models via RunPod pod or rclone to the network volume before deploying serverless.
## RunPod Deployment
1. Go to RunPod Console > Serverless > New Endpoint
2. Configure endpoint:
- **Container Image**: `yourusername/comfyui-runpod:latest`
- **GPU**: RTX 4090, RTX 5090, or A100 recommended
- **Network Volume**: Select your volume (mounts at `/userdata`)
- **Active Workers**: 0 (scale to zero)
- **Max Workers**: Based on budget
- **Idle Timeout**: 5-10 seconds
- **Execution Timeout**: 600 seconds (for video)
3. Deploy and note the Endpoint ID
## API Usage
### Endpoint URL
```
https://api.runpod.ai/v2/{ENDPOINT_ID}/runsync
```
### Headers
```
Authorization: Bearer {RUNPOD_API_KEY}
Content-Type: application/json
```
### Request Schema
```json
{
"input": {
"workflow": {},
"prompt": "optional prompt text",
"image": "optional base64 image",
"prompt_node_id": "optional node id for prompt",
"image_node_id": "optional node id for image",
"timeout": 300
}
}
```
### Example: Text-to-Image
```bash
curl -X POST "https://api.runpod.ai/v2/${ENDPOINT_ID}/runsync" \
-H "Authorization: Bearer ${RUNPOD_API_KEY}" \
-H "Content-Type: application/json" \
-d '{
"input": {
"workflow": '"$(cat workflow_api.json)"',
"prompt": "a photo of a cat in space"
}
}'
```
### Example: Image-to-Video
```bash
curl -X POST "https://api.runpod.ai/v2/${ENDPOINT_ID}/runsync" \
-H "Authorization: Bearer ${RUNPOD_API_KEY}" \
-H "Content-Type: application/json" \
-d '{
"input": {
"workflow": '"$(cat i2v_workflow_api.json)"',
"image": "'"$(base64 -w0 input.png)"'",
"prompt": "the cat walks forward",
"timeout": 600
}
}'
```
### Response Schema
Success:
```json
{
"id": "job-id",
"status": "COMPLETED",
"output": {
"status": "success",
"prompt_id": "abc123",
"outputs": [
{
"type": "video",
"filename": "output.mp4",
"data": "base64...",
"size": 1234567
}
]
}
}
```
Large files (>10MB video):
```json
{
"outputs": [
{
"type": "video",
"filename": "output.mp4",
"path": "/userdata/outputs/output.mp4",
"size": 52428800
}
]
}
```
Error:
```json
{
"output": {
"error": "error message",
"status": "error"
}
}
```
## Async Execution
For long-running video jobs, use async endpoint:
```bash
# Submit job
curl -X POST "https://api.runpod.ai/v2/${ENDPOINT_ID}/run" \
-H "Authorization: Bearer ${RUNPOD_API_KEY}" \
-H "Content-Type: application/json" \
-d '{"input": {...}}'
# Response: {"id": "job-id", "status": "IN_QUEUE"}
# Poll for result
curl "https://api.runpod.ai/v2/${ENDPOINT_ID}/status/${JOB_ID}" \
-H "Authorization: Bearer ${RUNPOD_API_KEY}"
```
## Workflow Export
Export workflows from ComfyUI in API format:
1. Open ComfyUI
2. Enable Dev Mode in settings
3. Click "Save (API Format)"
4. Use the exported JSON as the `workflow` parameter
## Custom Nodes Included
- ComfyUI-Manager
- ComfyUI_HuggingFace_Downloader
- ComfyUI-KJNodes
- comfyui_controlnet_aux
- ComfyUI-Crystools
- ComfyUI-VideoHelperSuite
- ComfyUI-Lora-Manager
- ComfyUI-GGUF
- ComfyUI-Frame-Interpolation
- ComfyUI-nunchaku
- ComfyMath
- ComfyUI_UltimateSDUpscale
## Troubleshooting
### Cold Start Timeout
First request starts ComfyUI server (~30-60s). Increase idle timeout or use warm workers.
### Out of Memory
Reduce batch size or resolution in workflow. Use GGUF quantized models for large models.
### Model Not Found
Ensure models are uploaded to correct `/userdata/models/` subdirectory matching ComfyUI folder structure.
### Video Generation Timeout
Default max is 600s. For longer videos, split into segments or increase resolution/reduce frames.
### Connection Refused
ComfyUI server may have crashed. Check logs in RunPod console. Ensure workflow is valid.
## Local Testing
```bash
# Build
docker build -t comfyui-runpod:latest .
# Run with GPU
docker run --gpus all -p 8188:8188 \
-v /path/to/models:/userdata/models \
comfyui-runpod:latest
# Test handler
curl -X POST http://localhost:8188/runsync \
-H "Content-Type: application/json" \
-d '{"input": {"workflow": {...}}}'
```
## Environment Variables
| Variable | Default | Description |
|----------|---------|-------------|
| `HF_HOME` | `/workspace/.cache/huggingface` | HuggingFace cache |
| `HF_HUB_ENABLE_HF_TRANSFER` | `1` | Fast HF downloads |
| `PYTHONUNBUFFERED` | `1` | Realtime logs |